

Page | 29 Volume 2, Issue 3, June 2020

Gold in Them Tha-R Hills: A Review of R Packages for Exploratory
Data Analysis

Kota Minegishia and Taro Mienob
a University of Minnesota, Twin Cities, b University of Nebraska-Lincoln

JEL Codes: A2, Q1, Y1
Keywords: Exploratory data analysis, data science, data visualization, R programming

1 Introduction

There’s gold in them thar hills! —Mark Twain in The American Claimant

A hundred seventy years ago Americans flocked to California in search of gold. The Gold Rush left the

country with a powerful image of massive realignment of capital and labor in search of new economic

opportunities. With each subsequent era came new manifestations of the Gold Rush in the form of booming

industries, invoking a sense of new, ground-breaking opportunities that could lead to permanent structural

change in the existing business environments. Today, businesses are gathering and accumulating an

enormous amount of data: effective goldmines. In this new Gold Rush, the demand for the skills to

understand, explore, and apply data is accelerating. Computer programmers and data scientists are

particularly in high demand, and their tool kit is expanding rapidly. In preparing students for an

increasingly data-driven world, applied economics programs have an increased role to play through
teaching data literacy and modern data analytics skills.

 A good starting point may be to teach relevant tools of data exploration and visualization, also

known as exploratory data analysis (EDA), that are popular in the field of data science. The exploratory

nature of EDA contrasts with statistical modeling and hypothesis testing, a long-standing tradition in

modern economics curriculums. An increasing number of economics courses integrate statistical

programming in R as an integral topic. Current examples include Microeconomics with R by John

Humphries at Yale University, Methodology of Economic Research by Jude Bayham at Colorado State

University, econometrics course materials taught with R by Ed Rubin, Data Science for Economists by Grant

Abstract

With an accelerated pace of data accumulation in the economy, there is a growing need for data literacy

and practical skills to make use of data in the workforce. Applied economics programs have an important

role to play in training students in those areas. Teaching tools of data exploration and visualization, also

known as exploratory data analysis (EDA), would be a timely addition to existing curriculums. It would

also present a new opportunity to engage students through hands-on exercises using real-world data in

ways that differ from exercises in statistics. In this article, we review recent developments in the EDA

toolkit for statistical computing freeware R, focusing on the tidy verse package. Our contributions are

three-fold; we present this new generation of tools with a focus on its syntax structure; our examples

show how one can use public data of the U.S. Census of Agriculture for data exploration; and we highlight

the practical value of EDA in handling data, uncovering insights, and communicating key aspects of the

data.

Teaching and Educational Methods

Page | 30 Volume 2, Issue 3, June 2020

McDermott at University of Oregon, and Applied Econometrics by Taro Mieno at University of Nebraska–

Lincoln as far as the authors are aware of. Indeed, the tools of EDA are generally complementary to the

teaching of analytical skills and thought processes emphasized in applied economics. Teaching EDA tools

would be not only timely but also stimulating for students who have an interest in learning to use real-

world data on current socioeconomic issues. Hands-on EDA exercises can provide a vital opportunity for

students to acquire practical data analysis skills beyond the usual exercises in statistics.

 In this article, we review recent developments in the EDA toolkit in statistical computing freeware

R. Our intended audience includes course instructors, graduate students, and advanced undergraduate

students particularly those who are pursuing independent studies, participating in research projects, or

serving as teaching assistants. We use data sets familiar to agricultural economists for illustration. Our

contributions are three-fold: we present this new generation of tools with a focus on its syntax structure,

our examples show how one can use public data of the U.S. Census of Agriculture for data exploration, and

we highlight the practical value of EDA in handling data, uncovering insights, and communicating key

aspects of the data. Our review focuses on the tools of the tidyverse package, a meta package that includes

ggplot2 and dplyr and uses a streamlined coding syntax across its member packages (Wickham et al.

2019).1 In writing this article, we borrow core concepts from R for Data Science (Wickham and

Grolemund 2017). For interested readers, additional resources include ModernDive (Ismay and Kim

2019), Data Visualization with R (Kabacoff 2018), Data Visualization: Practical Introduction (Healy

2018) and Geocomputation with R (Lovelace, Nowosad, and Muenchow 2019).2 All R code used in this

document is made available in the supplementary appendix.3

 The rest of the article is organized as follows. We provide a short, general comparison between R

and Stata, a popular proprietary statistical software among economists. The main contents of our review

of R tools consist of four sections that (a) introduce core data visualization methods of ggplot2, (b)

demonstrate the application of data transformation methods of dplyr with U.S. agriculture data, (c) provide

an analytical example within a data exploration narrative, and (d) briefly describe additional tools. The
final section concludes the article.

2 Comparison of R and Stata
As a general comparison, we comment on the relative strengths and weakness of two commonly used

software programming languages in the field of economics, R and Stata.4

2.1 A Basic Introduction
R, formally known as R Projects, is a statistical computing, graphics, and programming language that is

available free of charge. R is not managed by a single person or company but instead by an “R core group.”5

The R core group has the authority to modify the R source code archive. For most users, it suffices to know

that R simply executes commands according to programs, or R functions, that are loaded by default and by

the user. To execute commands beyond basic computations and visualization tasks, R users need to load R

packages, collections of R functions developed and shared by other R users. Which packages to use depends

1 They are not part of the base package. To install a R package, execute the code in the R console, for example:
install.packages("tidyverse").
2 R for Data Science: https://r4ds.had.co.nz/, ModernDive: https://moderndive.com/, Data Visualization with R:
https://rkabacoff.github.io/datavis/, Data Visualization A Practical Introduction: http://socviz.co/index.html, Geocomputation
with R: https://geocompr.robinlovelace.net/.
3 https://github.com/tmieno2/R-AETR
4 Software download: https://cloud.r-project.org/ and https://download.stata.com/download/.
5 https://www.r-project.org/contributors.html.

https://r4ds.had.co.nz/
https://moderndive.com/
https://rkabacoff.github.io/datavis/
http://socviz.co/index.html
https://geocompr.robinlovelace.net/
https://r4ds.had.co.nz/
https://moderndive.com/
https://rkabacoff.github.io/datavis/
http://socviz.co/index.html
https://geocompr.robinlovelace.net/
https://github.com/tmieno2/R-AETR
https://cloud.r-project.org/
https://www.r-project.org/contributors.html

Page | 31 Volume 2, Issue 3, June 2020

on the user’s objectives and personal preferences. For example, two popular EDA toolboxes are the

tidyverse package, which is our focus in this article, and the data.table package.

 Stata is a proprietary statistics software from StataCorp. In most universities, students can access

Stata in their computer labs through a site license. As of December 2019, the Stata perpetual license for

U.S. students is $225 for Stata/IC (the least powerful version), $425 for Stata/SE, $595 for Stata/MP 2-core

(midrange capabilities), and $795 for Stata/MP (the most powerful). Short-term U.S. student licenses are

also available for $48 for Stata/IC and $125 for Stata/SE for 6 months. StataCorp is responsible for software

descriptions, updates, and additions of Stata commands. Separately, some user-contributed Stata packages,

a collection of Stata ado files, are available through RePEc (which stands for Research Papers in

Economics). Also, StataCorp maintains a quarterly publication of the Stata journal for user-contributed

statistical techniques and effective teaching methods using Stata.

2.2 Statistical Capability
R is open-source software with a rapidly expanding toolkit built by the R user community across diverse

fields of statistics and sciences. The R toolkit includes advanced tools of machine learning, Bayesian

statistics, and spatial statistics that are of interest to many economists, as well as statistical tools in other

disciplines like biostatistics that may help economists working on interdisciplinary research. R offers rich

tools in some fields of econometrics, including, for example, linear or quadratic programming (Rglpk and

ipotr packages), nonlinear optimization (nloptr package), and advanced quantile regression analyses

(quantreg, quantreg.nonpar, and bayesQR packages).

 Stata’s development of new tools primarily rests on StataCorp’s undertaking. Given its limited

resources, the company focuses on tools for social scientists, including economists. For instance, Stata

offers a variety of estimation options for state-of-the-art treatment effects and panel data estimation

techniques that are useful to economists. Advanced coding implementation of customized nonlinear

estimation is also available.6 The documentation of various commands in Stata is consistently managed by

the company and hence user-friendly; in contrast the user-contributed projects of R may lack consistent

documentation or transferable command syntaxes across various packages. Thus, a familiarity with both

R and Stata would give the user access to a wide range of statistical methods, some of which may be

available in one software but not in the other.

2.3 Machine Learning Methods

There is a growing interest in R among agricultural economists, and it can be explained by the increased

importance of Big Data and the expanding capabilities of machine learning methods (Coble et al. 2018;

Storm, Baylis, and Heckelei 2019). Numerous packages that implement state-of-the-art machine learning

methods are available in R, including LASSO, Random Forest, Neural Network, and Boosted Regression.

The keras and tensorflow packages handle Convolutional Neural Network (CNN), a workhorse for image

processing used in facial recognition and autonomous driving. An interesting application of CNN may

include spatial data analysis (Storm, Baylis, and Heckelei 2019). The rnn package allows for recurrent

neural network modeling, which is particularly suitable for state-dependent time-series analysis and a

certain type of price analysis. The grf package leads the generalized random forest framework, which

includes causal forest, quantile forest, and instrumental forest developed by Athey, Tibshirani, and Wager

6 https://blog.stata.com/2016/01/26/programming-an-estimation-command-in-stata-a-review-of-nonlinear-optimization-
using-mata/

https://blog.stata.com/2016/01/26/programming-an-estimation-command-in-stata-a-review-of-nonlinear-optimization-using-mata/
https://blog.stata.com/2016/01/26/programming-an-estimation-command-in-stata-a-review-of-nonlinear-optimization-using-mata/

Page | 32 Volume 2, Issue 3, June 2020

(2019). The XGBoost package offers extreme gradient boosting regression, which has been shown to

outperform other machine learning methods in many applications.

 In the latest version of Stata 16, StataCorp has introduced LASSO commands. In addition, user-

contributed packages such as LASSOPACK (LASSO, elastic net, and ridge regressions), RFOREST (random

forest classification and regression), and KFOLDCLASS (K-fold cross-validation for binary outcomes) are
available. It is plausible that many machine learning algorithms will be gradually made available.

2.4 Spatial Data Handling
Many data analyses in agricultural economics involve spatial considerations. R offers an extensive

capability in processing spatial data (sp, sf, raster, rgdal, and rgeos packages are some examples) and

creating geographical maps (ggplot2 and tmap packages have wide use). If for instance, one is interested

in understanding the impact of climate on cropping patterns at the sub-county level, he or she could

combine the Cropland Data Layer (CDL) files and the county boundaries data to summarize a mixture of

cropping patterns for each county, all of which can be done within R without having to use specialized

programs such as ArcGIS or QGIS.7 In contrast, Stata has a very limited capability for handling spatial data

or generating geographic data figures. One exception may be the user-contributed mapping commands like

spmap and maptile.

2.5 Publicly Available Data
Recent developments in R include packages that are dedicated specifically for downloading publicly

accessible data. One can download data from the USDA NASS CDL (cdlTools package), USGS and EPA

hydrologic and water quality data (dataRetrieval), Quick Stats (rnassqs package), PRISM (prism package),

Daymet (daymetr package), Sentinel-2 satellite imagery data (sen2r package), the National Elevation Data

Set digital elevation models, the NCSS Soil Survey Geographic data set, and many others (FedData package).

These R packages can automate the process of manually downloading individual public data files.

Additionally, the httr package allows for data requests via Application Programming Interface (API), and

the jsonlite package helps process JSON data files that are common in API outputs. Stata has a capability to

utilize API through the winexec curl command. Also, downloaded data in XML or JSON format can be

imported into Stata via xmluse or insheetjson, respectively.

3 Data Visualization with ggplot2
This section highlights simple data visualization methods with R’s ggplot2 package for creating scatter,

line, and bar plots.8 The ggplot2 syntax has three essential components for generating data plots: data, aes,
and geom. It implements the following philosophy:

A statistical graphic is a mapping of data variables to aesthetic attributes of geometric objects.
(Wilkinson 2005, p. 42)

where the data, aesthetic attributes, and geometric objects are programmed as follows:

• data: a data frame; e.g., the first argument in ggplot(data, ...).

7 For example, see R as GIS for Economists: https://tmieno2.github.io/R-as-GIS-for-Economists/.
8 For basic R tutorials, try http://www.cookbook-r.com/ or https://en.wikibooks.org/wiki/R_Programming/Sample_Session. A
useful material for teaching may be https://psyteachr.github.io/.

https://tmieno2.github.io/R-as-GIS-for-Economists/
http://www.cookbook-r.com/
https://en.wikibooks.org/wiki/R_Programming/Sample_Session
https://psyteachr.github.io/

Page | 33 Volume 2, Issue 3, June 2020

• aes: x and y variables specifying the horizontal and vertical axes and other variables by which data can
appear in different colors, shapes, sizes, etc.; e.g., aes(x = var_x, y = var_y, color = var_z).

• geom: geometric objects such as points, lines, bars, etc.; e.g., geom_point(), geom_line(), geom_bar(),
geom_histogram().

This simple philosophy provides an easy way for remembering how to relate the three components with
each other in coding. Note that data sets are often referred to as data frames, corresponding to R’s
data.frame class objects that, unlike matrix class objects, can contain both string and numeric variables in
columns.
 We now examine some basic examples. The following code produces scatterplots of horsepower
and miles per gallon using the mtcars data set, a sample data set automatically loaded in base R (Figure 1).
It came from the 1974 Motor Trend U.S. magazine and contains 11 automobile specification attributes for
32 cars, including attributes like gross horsepower (hp), miles per gallon (mpg), number of cylinders (cyl),
automatic transmission indicator (am), and weight in 1,000 of pounds (wt).9

Figure 1. Example of Scatterplots Using the mtcars Data Set in Base R

In the next example, we add more layers of geometric objects, see bullet point “geom” above (Figure

2). By default, a geometric object inherits the aesthetic attributes specified in gglot(data, aes()). To change

those attributes, one needs to provide specific attributes for each geometric object. In the first two plots,

note that the presence or absence of a color attribute specification in ggplot(data, aes()), which implies

different color attribute specifications in geom_smooth(). The third plot contains an example of fixed

aesthetic attributes like color and point size that are specified outside aes() and hence do not depend on

9 While unrelated to agriculture, this data set is commonly used for basic R tutorials and hence good to be familiar with.

scatterplot of hp and mpg
ggplot(mtcars, mapping = aes(x = hp, y = mpg)) +
 geom_point()

convert variable cylinder into a categorical variable
mtcars$cyl <- as.factor(mtcars$cyl)

scatterplot with added color and shape by cylinder
ggplot(mtcars, mapping = aes(x = hp, y = mpg, color = cyl)) +
 geom_point(aes(shape = cyl))

Page | 34 Volume 2, Issue 3, June 2020

the data. Also, one can add a geometric object with a new data set. For example, the third plot contains a

geometric object based on a subset of the data.

Figure 2. Example of Scatterplots with Linear Model and Smooth Fits Using the mtcars Data

add a layer of linear regression model fit for each cylinder type
ggplot(mtcars, aes(x = hp, y = mpg, color = cyl)) +
 geom_point(aes(shape = cyl)) +
 geom_smooth(method = lm)

add a layer of smooth regression fit (locally estimated scatterplot
smoothing: loess) across all cylinder types
ggplot(mtcars, aes(x = hp, y = mpg)) +
 geom_point(aes(shape = cyl, color = cyl)) +
 geom_smooth()

add a layer of large yellow dots to indicate automatic transmission
ggplot(mtcars, aes(x = hp, y = mpg)) +
 geom_point(data = filter(mtcars, am == 0), color = "yellow", size = 5) +
 geom_point(aes(shape = cyl, color = cyl)) +
 geom_smooth()

Page | 35 Volume 2, Issue 3, June 2020

Additionally, a facet_wrap() or facet_grid() layer splits the data into subsets by a categorical variable(s) and

generates multiple data plots on those subsets (Figure 3).

Figure 3. Example of Scatterplots for Subsets of the mtcars Data
Note: The data are split into two subsets by transmission type (top) and six subsets by the combination of transmission type

and number of cylinders (bottom). Variables mpg, hp, and cyl refer to miles per gallon, horse power, and the number of cylinders,

respectively.

Various cosmetic adjustments can be controlled through additional layers of coordinate attributes

(scale and coord) and other graphics attributes (labs, theme, and guides) as demonstrated in Figure 4.

add a character variable for transimission type
mtcars$am_char <- recode(c(mtcars$am), "0" = "automatic", "1" = "manual")

plot subsets of data by transmission type
ggplot(mtcars, aes(x = hp, y = mpg)) +
 geom_point(aes(shape = cyl, color = cyl)) +
 facet_wrap(~ am_char)

plot subsets of data by transmission type and number of gears
ggplot(mtcars, aes(x = hp, y = mpg)) +
 geom_point(aes(shape = cyl, color = cyl)) +
 facet_grid(gear ~ am_char)

Page | 36 Volume 2, Issue 3, June 2020

Figure 4. Example of Scatterplots Using the mtcars Data with Cosmetic Adjustments
Notes: (A) Specified breaks on the y axis, (B) log-scaled axes, (C) added axis labels and a black-and-white theme, and (D)
enhanced legend keys.

change the displayed values on the y axis
ggplot(mtcars, aes(x = hp, y = mpg)) +
 geom_point(aes(shape = cyl, color = cyl)) +
 scale_y_continuous(breaks = seq(10, 36, by = 4))

map in log10 scale
ggplot(mtcars, aes(x = hp, y = mpg)) +
 geom_point(aes(shape = cyl, color = cyl)) +
 scale_x_log10() + scale_y_log10()

change theme to black and white and overwrite axis labels
ggplot(mtcars, aes(x = hp, y = mpg)) +
 geom_point(aes(shape = cyl, color = cyl)) +
 theme_bw() + labs(x = "Horse power", y = "Miles per gallon")

overwrite the *joint legend* for color and shape attributes
ggplot(mtcars, aes(x = hp, y = mpg)) +
 geom_point(aes(shape = cyl, color = cyl)) +
 guides(
 color = guide_legend(title ="cylinder", override.aes = list(size = 4)),
 shape = guide_legend(title ="cylinder", override.aes = list(size = 4))
)

A B

Page | 37 Volume 2, Issue 3, June 2020

 The next set of figures provides examples of adding a data label layer (Figure 5) and examples of

histograms and bar plots (Figure 6).

Figure 5. Example of Plots Using the mtcars Data with Selected Data-Point Labels

mtcars$car_model <- rownames(mtcars)

add labels of car model for cars that have either hp > 200 or mpg > 25
ggplot(mtcars, aes(x = hp, y = mpg)) +
 geom_point(aes(shape = cyl, color = cyl)) +
 ggrepel::geom_label_repel(aes(label = car_model),
 data = filter(mtcars, hp > 200 | mpg > 25))

example of boxplot
ggplot(mtcars, aes(x = am_char, y = wt)) +
 geom_boxplot() +
 geom_label_repel(aes(label = car_model),
 data = filter(mtcars, wt > 4.5 | wt < 3, am == 0))

Page | 38 Volume 2, Issue 3, June 2020

Figure 6. Example of Histograms (Classic Compound Bars and a Line Plot Style) and Bar Plots
(Three Examples) Using the mtcars Data

examples of histograms
ggplot(mtcars, aes(x = wt, fill = am_char)) +
 geom_histogram(binwidth = .75)

ggplot(mtcars, aes(x = wt, color = am_char)) +
 geom_freqpoly(binwidth = .75, position="dodge", size = 2)

examples of barplots
ggplot(mtcars, aes(x = cyl, fill = am_char)) + geom_bar()
ggplot(mtcars, aes(x = cyl, fill = am_char)) + geom_bar(position = "dodge")
ggplot(mtcars, aes(x = cyl, fill = am_char)) + geom_bar(position = "fill") + labs(y = "fract
ion")

Page | 39 Volume 2, Issue 3, June 2020

Variables wt, cyl, and am_char refer to weight, the number of cylinders, and transmission type, respectively.

4 Data Exploration with dplyr
This section reviews essential functions for transforming data with dplyr and uses U.S. agriculture data for

a demonstration of EDA that includes querying data, applying geospatial visualizations, and visual

presentations of data summaries. Before we begin, let us note why exploring data is important and why

tools of data transformation matter. Most statistical tools allow us to transform a data set by creating new

variables, selecting specific subsets, sorting or grouping data, collapsing data into group-level statistics, or

any sequential combination of those operations. And perhaps when combined with some data

visualization, often by chance, the transformed data set may reveal new aspects of the data.

 While curiosity-based exploration may seem like a luxury, it is necessary if we want to understand

the data and discover the insights it provides. Only after a particular combination of data transformations,

may certain aspects of the data be revealed or become noticeable. That should prompt subsequent

questions like, “How do we know which data transformations to perform?” or “How can we tell whether

we have uncovered all possible interesting aspects of the data?” A simple answer to both questions is, “We

don’t, but we should try our best.” This is precisely why the tools of EDA matter. The easier and the simpler

the tools are, the more frequently we use them and the more thoroughly we explore the data. The power

of data visualization is multiplied by the ability and agility to transform the data at hand.

The tools of the dplyr package enable us to act nimbly, explore, and understand the data. That can make us

feel like we are interacting with the data rather than merely transforming it. Before discussing why that

may be the case, let us introduce the core R functions in the dplyr package:

• filter(): extracts rows (observations) by logical vectors.
• select(): extracts columns (variables) by column names.
• group_by(): assigns rows into groups by column names.
• mutate(): creates new variables in a data frame.
• summarise(): collapses a data frame into summary statistics.
• arrange(): sorts row ordering based on column names.

These function names are self-descriptive: filter() makes a subset of the data set by extracting rows that

meet specified conditions; select() extracts selected variables; group_by() creates a grouped data frame,

which enables subsequent computations in mutate() and summarise() to be performed within each group;

mutate() creates new variables through direct arithmetic operations of existing variables, canned

functions, and user-defined functions; summarise() transforms a data set into statistics through canned

functions or user-defined functions; and arrange() sorts the row order of the data set. These functions can

be combined in any order to accomplish a desired data transformation. For example, one can extract a

subset of the data by filter(), set groups by group_by(), compute summary statistics by summarise(), and
use arrange() to sort the results.

 Table 1 provides a comparison of these functions with the corresponding commands in Stata. Most

applied economists would be very familiar with these data transformations, which is a helpful set of tools

for getting started with dplyr. Here, we offer three reasons for why these dplyr functions can be perceived

as more powerful than the corresponding functions in other programs such as Stata.

 First, the dplyr functions are designed to be sequentially combined via a pipe operator (%>%), which

makes the sequencing very smooth and natural to code. Each of the functions above takes a data frame

object in the first argument and returns a data frame object, and this allows for piping, that is, applying

functions sequentially by passing the output of one function into the first argument of the next. For

Page | 40 Volume 2, Issue 3, June 2020

 Table 1. Comparable Data Transformation Commands between R and Stata

example, func3(func2(func1(data,...), ...), ...) can be rewritten as data %>% func1(...) %>% func2(...) %>%

func3(...). Piping makes R code more readable and breaks down a complex data manipulation into a

sequence of simple steps. Notably, we can read a sequence of operations in plain English by substituting

the %>% symbol with then. For example, start with the data, then apply func1(...), then func2(...), and then

func3(..). This makes data exploration approachable (the user has an intuitive framework for coding the

first few functions), expandable (functions are easy to add on), and even rewarding (the resulting code can

accomplish complex data transformations).

 Second, the simplicity in needing to remember just six functions is empowering for the user. These

functions condense the essence of data transformations needed for exploring data. Remembering these

functions and piping them allows us to perform a myriad of data transformations without dedicating much

brain power to formulating the coding instructions.

 Third, R’s data management environment is conducive to performing a series of data

transformation and visualization tasks without any commitment to altering the working copy of the data

set. R separately handles the task of transforming data from the task of saving the transformed data under

a given name. Piping allows us to execute a series of data tasks without needing to overwrite the working

data set. When it is desirable to save transformed data (e.g., creating different data summaries or using

them in subsequent calculations), it is straightforward to keep multiple data sets in the working

environment (i.e., just give new names to outputs).

With those six commands presented above, we can approach data exploration through iterative trials of

data transformations and visualizations through extracting subsets, grouping, sorting, generating

variables, and computing data summaries. Each iteration, sparked by an inquisitive hypothesis, offers the

potential to reveal new aspects of the data. The interesting data patterns, correlations, anomalies, and

outliers revealed in one inquiry can lead to another line of inquiry. By allowing improvisations through

EDA, we create a sense of interaction with the data. After repeated use, these tools in R can give one an

increased sense of confidence and control to explore the data at hand.

4.1 Farm Data
We now move to our demonstrations with real data. In the rest of the section, we examine the U.S. Census

of Agriculture (2017),10 for which various summary data are publicly available at the country, state, and

10 Available at https://www.nass.usda.gov/Publications/AgCensus/2017/index.php and also in the supplementary appendix.

https://www.nass.usda.gov/Publications/AgCensus/2017/index.php
https://www.nass.usda.gov/Publications/AgCensus/2017/index.php
https://www.nass.usda.gov/Publications/AgCensus/2017/index.php

Page | 41 Volume 2, Issue 3, June 2020

county levels. For convenience, the downloaded data set is separated into a national-level data set us17,

state-level data set state17, and county-level data set county17. For us17, specifying some variables by
select() and printing the first five rows yields:

Note that the national level data set alone contains over 80,000 rows. The state or county level data set will

contain far more rows of data. To identify a variable of interest in a large data set like this, it is essential to

have some understanding of its data structure. Two useful approaches here are to (1) become familiar with

Quick Stats 2.0,11 with which these data sets are consistently organized and (2) scan through published

census of agriculture tables for its contents and organization.

 Suppose that we are interested in the prevalence of small (those farms with less than $100,000 of

sales) and nonsmall farms (for the sake of discussion, say, farms with greater than $100,000). The

information needed for this is found in Table 2 of the U.S. and state census tables. We can extract the

relevant information by specifying the table number in filter() and inspecting unique entries in the Item

column:

The information we need is a cross tabulation between the Item being “COMMODITY TOTALS—

OPERATIONS WITH SALES” and the Class, two variables that contain the number of farms and the

information about farm sales class. We use filter() to pinpoint the data we are seeking.

11 Accessible at https://quickstats.nass.usda.gov/.

us17 %>% select(census_table, Sector, Commodity, Item, geog_level, Value) %>% print(n=5)
A tibble: 82,025 x 6
census_table Sector Commodity Item geog_level Value
<dbl> <chr> <chr> <chr> <chr> <dbl>
1 1 ECONOM… FARM OPERA… FARM OPERATIONS - NUM… NATIONAL 2.04e6
2 1 ECONOM… FARM OPERA… FARM OPERATIONS - ACR… NATIONAL 9.00e8
3 1 ECONOM… FARM OPERA… FARM OPERATIONS - ARE… NATIONAL 4.41e2
4 1 ECONOM… AG LAND AG LAND, INCL BUILDIN… NATIONAL 1.31e6
5 1 ECONOM… AG LAND AG LAND, INCL BUILDIN… NATIONAL 2.98e3
… with 8.202e+04 more rows

find the relevant Item
us17 %>% filter(census_table == 2) %>%
 select(Item) %>% unique()
A tibble: 144 x 1
Item
<chr>
1 COMMODITY TOTALS - OPERATIONS WITH SALES
2 COMMODITY TOTALS - SALES, MEASURED IN PCT OF FARM OPERATIONS
3 COMMODITY TOTALS - SALES, MEASURED IN $
4 COMMODITY TOTALS - SALES, MEASURED IN PCT OF FARM SALES
5 COMMODITY TOTALS - SALES, MEASURED IN $ / OPERATION
6 CROP TOTALS - OPERATIONS WITH SALES
7 CROP TOTALS - SALES, MEASURED IN PCT OF FARM OPERATIONS
8 CROP TOTALS - SALES, MEASURED IN $
9 CROP TOTALS - SALES, MEASURED IN PCT OF FARM SALES
10 GRAIN - OPERATIONS WITH SALES
… with 134 more rows

https://quickstats.nass.usda.gov/
https://quickstats.nass.usda.gov/

Page | 42 Volume 2, Issue 3, June 2020

Note that the national data set provides the aggregate record for the sales class of $5,000,000 or more as

the most detailed information on larger farms. If similar operations are applied to the state or county level

data, one would find that all sales classes above $1,000,000 and above $500,000 are aggregated,

respectively.

 Let’s turn to county-level data. By continuing on the previous example, suppose that we want to

count farms by a binary sales-class consisting of small farms (label S) versus not-small farms (label NS) at

the county level. We do this by selecting relevant data, creating a new class variable (by comparing the

sales class in the data to user-defined reference class_S that contains a vector of class names for those under

$100,000 in sales), and summarizing the number of farms by county and the binary sales-class:

find the relevant Item and Class
farm_class_US <- us17 %>%
 filter(
 census_table == 2,
 grepl("COMMODITY TOTALS - OPERATIONS WITH SALES", Item),
 !is.na(Class)
) %>% select(Class, Value)

farm_class_US
A tibble: 16 x 2
Class Value
<chr> <dbl>
1 FARM SALES: (LESS THAN 1,000 $) 603752
2 FARM SALES: (1,000 TO 2,499 $) 187949
3 FARM SALES: (2,500 TO 4,999 $) 185341
4 FARM SALES: (5,000 TO 9,999 $) 208074
5 FARM SALES: (10,000 TO 19,999 $) 174780
6 FARM SALES: (20,000 TO 24,999 $) 53438
7 FARM SALES: (25,000 TO 39,999 $) 100490
8 FARM SALES: (40,000 TO 49,999 $) 43623
9 FARM SALES: (50,000 TO 99,999 $) 119434
10 FARM SALES: (100,000 TO 249,999 $) 130932
11 FARM SALES: (250,000 TO 499,999 $) 87839
12 FARM SALES: (500,000 TO 999,999 $) 69703
13 FARM SALES: (1,000,000 OR MORE $) 76865
14 FARM SALES: (1,000,000 TO 2,499,999 $) 53611
15 FARM SALES: (2,500,000 TO 4,999,999 $) 14366
16 FARM SALES: (5,000,000 OR MORE $) 8888

Page | 43 Volume 2, Issue 3, June 2020

When we compare where small (S) and nonsmall farms (NS) are numerous, the two lists of top counties

are not geographically overlapping for these two farm classes. Summing up the number of farms within
each binary sales class yields:

farms <- county17 %>%
 filter(
 census_table == 2,
 grepl("COMMODITY TOTALS - OPERATIONS WITH SALES", Item),
 !is.na(Class), Co_name != "NULL"
) %>%

 # create a new variable indicating sales < $100k
 mutate(class_S_NS = ifelse(Class %in% class_S, "S", "NS")) %>%
 group_by(St_code, St_name, Co_code, Co_name, class_S_NS) %>%
 summarise(Value = sum(Value, na.rm = T))

show the top 10 county for the numbers of small farms
farms %>% filter(class_S_NS=="S") %>% arrange(desc(Value)) %>% head(n = 10)
A tibble: 10 x 6
Groups: St_code, St_name, Co_code, Co_name [10]
St_code St_name Co_code Co_name class_S_NS Value
<chr> <chr> <chr> <chr> <chr> <dbl>
1 04 AZ 001 APACHE S 5529
2 06 CA 073 SAN DIEGO S 4571
3 48 TX 367 PARKER S 4521
4 04 AZ 017 NAVAJO S 4181
5 48 TX 231 HUNT S 4040
6 41 OR 005 CLACKAMAS S 4013
7 15 HI 001 HAWAII S 3929
8 12 FL 083 MARION S 3776
9 48 TX 497 WISE S 3610
10 08 CO 123 WELD S 3407

show the top 10 county for the numbers of non-small farms
farms %>% filter(class_S_NS == "NS") %>% arrange(desc(Value)) %>% head(n = 10)
A tibble: 10 x 6
Groups: St_code, St_name, Co_code, Co_name [10]
St_code St_name Co_code Co_name class_S_NS Value
<chr> <chr> <chr> <chr> <chr> <dbl>
1 42 PA 071 LANCASTER NS 2382
2 06 CA 019 FRESNO NS 2240
3 06 CA 107 TULARE NS 1800
4 06 CA 077 SAN JOAQUIN NS 1414
5 06 CA 099 STANISLAUS NS 1305
6 06 CA 047 MERCED NS 1100
7 27 MN 145 STEARNS NS 1091
8 19 IA 167 SIOUX NS 1070
9 06 CA 097 SONOMA NS 849
10 55 WI 043 GRANT NS 828

Page | 44 Volume 2, Issue 3, June 2020

Of the 2 million farms for which the census gathered data, roughly 1.68 million farms (82 percent) had less

than $100,000 in revenues. The USDA defines a farm to be “any place from which $1,000 or more of

agricultural products were produced and sold, or normally would have been sold, during the census year”

(O’Donoghue et al. 2009). In fact, over 600,000 farms do not have sales above $1,000 in 2017, as shown in

the first summary farm_class_US above. Although the definition of farms in USDA statistics has been

debated previously, no change has been made (O’Donoghue et al. 2009).

 One strength of R for agricultural data analysis is to be able to produce geographical representations

of data. With county-level data paired with the state-county Federal Information Processing Standards

(FIPS) codes, it is straightforward to project the data on maps. For instance, the following sample code

shows how variable var1 in data set data can be mapped at the county level:

Here, geo_county contains the geometry data of U.S. county boundaries (which can be replicated by

downloading any county-level information of the American Community Survey with tidycensus package).

Layer geom_sf() handles the geometry aesthetic and here supplies a layer that fills county shapes with

different colors depending on the value of var1. Additional layers coord_sf(datum = NA) and

theme_minimal() instruct how to remove data plot graphics like axes and data plot area, giving a clean finish

to the map output. Figures 7 and 8 provide examples of mapping the farm distributions using the binary
revenue-class variable defined above.

total number of farms by class
farms %>% group_by(class_S_NS) %>%
 summarise(subtotal = sum(Value, na.rm = T)) %>%
 ungroup() %>%
 mutate(total = sum(subtotal, na.rm = T),
 fraction = round(subtotal / total, 2))
A tibble: 2 x 4
class_S_NS subtotal total fraction
<chr> <dbl> <dbl> <dbl>
1 NS 365339 2042220 0.18
2 S 1676881 2042220 0.82

merge county level data with geographic data and generate a color-coded map
left_join(geo_county, data, by = c("GEOID" = "FIPS")) %>%
 ggplot() +
 geom_sf(aes(fill = var1)) +
 coord_sf(datum = NA) + theme_minimal()

Page | 45 Volume 2, Issue 3, June 2020

Figure 7. Map of Farm Counts Using the Binary Sales-Revenue Class in the 2017 U.S. Census of
Agriculture

The first map shows the distribution of farms with sales less than $100,000, and the second map shows the

distribution of farms with sales above $100,000.

 In addition to the raw farm counts, the next map considers the relative prevalence of the small and

nonsmall farms (Figure 8). This approach may more clearly highlight the geographic concentrations of

farms in different farm-size classes across counties, especially in terms of how the concept of a farm (i.e.,

the revenue size of active farming and what meets the criteria for being considered a farm in the U.S. Census

of Agriculture database) systematically varies across geography.

Page | 46 Volume 2, Issue 3, June 2020

Figure 8. Map of Relative Farm Counts Using the Binary Sales-Revenue Classes in the 2017 U.S.
Census of Agriculture

The two maps show the relative frequency of farms with sales below $100,000 (first), and the farms with

sales above $100,000 (second).

 Next we turn to differences across major farming industries. Suppose that we want to see how the

concept of a farm differs across industries. We can examine the distributions of farm numbers and sales

values this time by industry. In the first example, we show Sankey flow charts (we used the flipPlots

package; Figures 9 and 10), which illustrate the contributions of different segments of data to the grand

total like various streams combining into a river. Here, we add an intermediate layer that represents the

subtotals by farm-sales class. For this purpose, we consider four levels of sales classes; marginal (less than

Page | 47 Volume 2, Issue 3, June 2020

Figure 9. Sanky Flow Chart of Farm Counts by Sales and Industry from the 2017 U.S. Agricultural
Census Data

Figure 10. Sanky Flow Chart of Sales Values by Farm Sale Class and Industry from the 2017 U.S.
Agricultural Census Data

Page | 48 Volume 2, Issue 3, June 2020

$10,000), small ($10,000 to $100,000), medium ($100,000 to $1,000,000), and large (greater than

$1,000,000). These charts show relationships among the farm numbers and sales values through the lens

of farm size and by the industry.

 Figure 9 shows that nearly 60 percent of the farms in the census are marginal producers with less

than $10,000 in sales. Anyone who uses statistical information in the agricultural census must be aware of

how the presence of these marginal farms impacts statistics like the averages per farm. On the other hand,

the large farms with over $1,000,000 in sales revenues accounted for roughly 4 percent of the farm

population, but produced nearly 70 percent ($268,000,000,000) of agricultural products in sales values

(Figure 9 and 10). About 88 percent of the farms are classified as producers of grain, beef cattle, “other

crop,” or “other animal” products (suggesting that only a small fraction of farms produce poultry and eggs,

hogs, dairy, fruit and nuts, and vegetables). The majority of the medium-sized farms are grain producers.

Grain production is unique in that its sales are not dominated by large-sized farms, as its total sales
contribution is roughly equally split between medium- and large-sized farms.

4.2 How Does Farming Differ across States and Industries?
We next explore the characteristics of farm economies using industry statistics across states. It is common

to see a ranking of states by sale values for a given industry. Here, we consider a slightly different

comparison in which we visualize the relative size of a state’s crop and livestock sectors. By selecting

certain variables from the state-level census data, we constructed the data set df_NAICS as organized by

state and North American Industry Classification System (NAICS) code. In the following code example, we

aggregate the sales revenue by state and NAICS category (i.e., crop or livestock), converting the data set

into the “wide” format by distributing the sales value into “crop” and “livestock” variables, and then plot
the data with the annotation of state names if the state exceeds certain sales value thresholds (Figure 11):

see "ag_examples.R" for creating data set "df_NAICS"
load(file="data sets/df_NAICS.RData")

crop_vs_animal <-
 df_NAICS %>% filter(!is.na(NAICS_cat)) %>%
 group_by(St_code, St_name, USDA_region, NAICS_cat) %>%
 summarise(revenue_sales = sum(revenue_sales, na.rm = T) / 10^9) %>%
 pivot_wider(names_from = NAICS_cat, values_from = revenue_sales)

crop_vs_animal %>%
 ggplot(aes(x = Crop, y = Livestock, color = USDA_region, shape = USDA_region)) +
 geom_point() +
 geom_label_repel(aes(label = St_name), show.legend = FALSE,
 data = crop_vs_animal %>% filter(Crop > 6 | Livestock > 7)) +
 labs(x = "Crop Agriculture Revenue, $ billion",
 y = "Livestock Agriculture Revenue, $ billion",
 caption = "Data Source: US Census of Agriculture, 2017.")

Page | 49 Volume 2, Issue 3, June 2020

Figure 11. Livestock versus Crop Output by State (Selectively Labeled) from the 2017 U.S. Agricultural Census Data

 It is clear that California is an exceptionally large agricultural state in both crop and livestock

production. Also, one can see that Illinois, Washington, and North Dakota are specialized in crop

production; Texas, Kansas, North Carolina, and Wisconsin are specialized in livestock production; and

Iowa, Nebraska, and Minnesota are relatively balanced between the revenues from crop and animal

agriculture (Figure 11).

 In gathering various USDA National Agricultural Statistics Service (NASS) and census data, it is

convenient to directly download them using an API (e.g., using the rnassqs package). The following is an

example for obtaining the aggregate land asset value and net farm income for the poultry industry from

the agricultural census data:

library(rnassqs)

NASSQS_TOKEN <- "C9B668A9-3062-..." # use your token
nassqs_auth(key = NASSQS_TOKEN)

check asset and profitability of poultry sector
asset_profit_poultry <- nassqs(list(
 source_desc = "census",
 agg_level_desc = "national",
 domaincat_desc= "NAICS CLASSIFICATION: (1123)",
 short_desc = c("AG LAND, INCL BUILDINGS - ASSET VALUE, MEASURED IN $",
 "INCOME, NET CASH FARM, OF OPERATIONS - NET INCOME, MEASURED IN $"),
 year = c(2012, 2017))) %>%
 select(sector_desc, short_desc, state_alpha, year, commodity_desc, Value)

note: only 2012 and 2017 data are available

Page | 50 Volume 2, Issue 3, June 2020

Next, suppose that we ask, “what does it take for a farm to thrive?” To explore this question, it is instructive

to compare the average utilization of capital and labor per operator across states and agricultural

industries. Here we define capital as the sum of the total asset value of land, buildings, and machinery for

crop farming. For livestock farms, we add the value of livestock inventory for poultry (broiler chickens,

nonbroiler chickens, and turkeys), hogs, dairy cows, and beef cattle using NASS survey and census

statistics. For the poultry industry, we further add an estimated value of facility (for processing, hatchery,

and feed mills that are largely owned by integrators) at the estimated rate of $3.5 per chicken-equivalent

production (using the approximate rate based on the reporting by Wood 2018). Note that these asset
values are only a crude approximation (Figures 12 and 13).

Figure 12. Capital and Labor per Operator by State and Agricultural Industry from the 2017 U.S.
Agricultural Census and NASS Survey

Note: The top plot shows the data plot for crop industries, and the bottom plot shows that for livestock industries.

Page | 51 Volume 2, Issue 3, June 2020

 Grain production is more capital intensive than other types of crop farming, whereas fruit and nut

production tends to be more labor intensive (Figure 12). In most states, grain producers are likely to

require from $2,000,000 to 5,000,000 of capital asset, for which much of the value can be attributed to the

value of the land. The data points for the “other crop” category are clustered together near zero except

California, potentially because this category contains many marginal producers with less than $10,000 in

sales.

 For livestock agriculture, it is clear that cattle feedlot production is capital intensive, in which much

of the capital is tied to the value of cattle inventory. In contrast, the data points for cattle ranch operations

are clustered near zero. Indeed, beef producers are very different between ranch and feedlot operations

since a typical feedlot manages much larger herds of cattle than a typical ranch. Dairy production is both

capital and labor intensive; the average dairy operator in California, Nevada, New Mexico, Idaho, and Texas

employs over $10,000,000 of assets and near 20 hired workers or more. In poultry and egg production, the

notion of a farm operator itself is rather different because many producers operate under contracts with

larger integrators such as Tyson, Pilgrim’s Pride, and Perdue. According to Alonzo (2016), in 2015, the top

five integrators had over 60 percent of market share in the poultry and egg industry.

 In the plot above, we see that the data points for some types of operations like grain, dairy, and

cattle feedlot production, visually line up with underlying linear trends. We can obtain an ordinary least

squares (OLS) estimate of this trend using the lm() function for linear models.

lm() produces a linear model class object, on which applying the summary() function gives an informative

output with a table of coefficients and common goodness-of-fit statistics. Here, we see that for each hired

farm worker, the estimated slope coefficient implies that a typical dairy farm would employ $377,000

OLS estimation by lm(.) function

Regress asset dollars on hired labor for dairy data
lm(formula = asset_per_unpaid ~ hired_to_unpaid,
 data = df_NAICS_simple %>%
 filter(revenue_sales > .01,
 NAICS_simple == "Dairy")
) %>% summary()

Call:
lm(formula = asset_per_unpaid ~ hired_to_unpaid, data = df_NAICS_simple %>%
filter(revenue_sales > 0.01, NAICS_simple == "Dairy"))

Residuals:
Min 1Q Median 3Q Max
-8.3776 -0.9915 -0.4703 0.4672 14.1909

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.62684 0.48002 3.389 0.00147 **
hired_to_unpaid 0.37662 0.04181 9.009 1.23e-11 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.695 on 45 degrees of freedom
Multiple R-squared: 0.6433, Adjusted R-squared: 0.6354
F-statistic: 81.16 on 1 and 45 DF, p-value: 1.231e-11

Page | 52 Volume 2, Issue 3, June 2020

worth of capital asset per hired farm worker. Let’s add a few more variables to this regression, such as

regional fixed effects and a debt-to-income ratio:

lm() treats character-string variables as factor/categorical variables and inserts indicator dummies for

each group. Also, to create a new variable from manipulating existing variables, one can use the I(.)

operator in the linear model formula. The estimates show that after accounting for regional differences in

the intercept and the relative use of debt to sales revenues, the average dairy farm capital asset is about

$301,000 per hired worker.

Last, we briefly turn to the capital structure and return on asset in farming (Figure 13). Keep in

mind that agricultural commodity prices vary from year to year, which causes the profitability to fluctuate.

Some states had a particularly profitable year in vegetable, fruit, and nut production in 2017. The poultry

and egg industry also had a particularly profitable year (note: the industry’s net income doubled from 2012

to 2017, according to the Census of Agriculture). Dairy producers in states with large-sized dairy

operations attained relatively high returns, while they were also highly leveraged (Figure 13).

Add more variables: region dummies, debt-to-income ratio
lm(formula = asset_per_unpaid ~
 hired_to_unpaid + USDA_region + I(debt_at_5pct/revenue_sales),
 data = df_NAICS_simple %>%
 filter(revenue_sales > .01,
 NAICS_simple == "Dairy")
) %>% summary()

Call:
lm(formula = asset_per_unpaid ~ hired_to_unpaid + USDA_region +
I(debt_at_5pct/revenue_sales), data = df_NAICS_simple %>%
filter(revenue_sales > 0.01, NAICS_simple == "Dairy"))

Residuals:
Min 1Q Median 3Q Max
-6.7925 -0.8585 0.0090 0.5823 12.8283

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.22568 1.91030 0.118 0.9065
hired_to_unpaid 0.30129 0.05387 5.593 1.76e-06 ***
USDA_regionNortheast 0.04172 1.22488 0.034 0.9730
USDA_regionPacific West 3.59442 1.66197 2.163 0.0366 *
USDA_regionPlains 1.48626 1.30884 1.136 0.2629
USDA_regionSoutheast -0.09535 1.40162 -0.068 0.9461
I(debt_at_5pct/revenue_sales) 2.12396 2.50791 0.847 0.4021

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.617 on 40 degrees of freedom
Multiple R-squared: 0.701, Adjusted R-squared: 0.6562
F-statistic: 15.63 on 6 and 40 DF, p-value: 3.852e-09

Page | 53 Volume 2, Issue 3, June 2020

Figure 13. Return and Debt per Asset by State and Agricultural Industry from the 2017 U.S.
Agricultural Census and NASS Survey

Note: The first plot shows the data plot for crop industries, and the second plot shows data for livestock industries.

5 Analytical Demonstration
For further illustration, this section presents an example of analytical data exploration on the topic of rural
population change. In particular, we investigate whether there are systematic relationships between the
intensification of grain farming and rural depopulation during the period 1972–2017. In preparation of the
data set, we selected the data for 1972 as the beginning of this time span because the NASS survey data in
1970 had a large number of missing data points. For the data beyond 1982, we assigned missing grain

Page | 54 Volume 2, Issue 3, June 2020

production values with zero if the county had a nonmissing value in the 1982 data. All grain production
values were expressed in 2017 dollars.
 We first generate two maps: one for the grain production by county in 1972 and the other for the
change in grain production from 1972 to 2017 (Figure 14). The first map also shows that much of the
Midwest had highly active grain production in 1972. The second map highlights a relative decline in grain
production in many parts of the country, while the Midwest and a part of the South increased their grain
production.

Figure 14. Map of Grain Production in 1972 and Production Change from 1972 to 2017

Page | 55 Volume 2, Issue 3, June 2020

Figure 15. Map of Population Change, 1972–2017

We next map the overall population change during the same period (Figure 15). It is clear that the

Midwest experienced the most significant population loss as a region. The two sets of maps together appear

consistent with a narrative that increased mechanization of grain production required fewer and fewer

laborers, which most severely affected the population in the Midwest (Johnson and Fuguitte 2000; Walzer

2003; White 2008; Longwoth 2009).

To further investigate the relationship between grain farming and population change, we plot

county-level data against per capita grain production. In Figure 16, the top row contains a data plot of the

raw data points (A) and a plot in the log-scale on the horizontal axis (B). The latter plot appears to suggest

a negative correlation between the population change and the grain production per person in 1972. This

correlation may be spurious because grain production per person may be affected by declining county

population trends. Thus, we substitute this measure with the total grain production in the county (C) as

well as the percentage change in grain production for 1972–2017 (D). For the latter, the cluster of data

points at -100 percent change represents the counties that produced some grain in 1972 and had no sales

records in 2017. These data plots seem to corroborate weak negative correlations between grain

production and population change.

Page | 56 Volume 2, Issue 3, June 2020

Figure 16. Scatter Data Plots of Grain Production and Population Change
Note: Top row figures use grain production per person in 1972 on the horizontal axis in the raw data scale (A) and the
logarithmic scale (B). The bottom figures use grain production in log-scaled dollars (C) and grain production in percentage
change (D).

 Analytically, let us consider an ordinary least squares regression of the form

𝑦𝑖𝑠 = 𝛼𝑠 + 𝐱𝑖𝑠𝛃 + 𝜀𝑖𝑠

where 𝑦𝑖𝑠 is population change in county i in state s from 1972 to 2017, 𝛼𝑠 are state fixed effects, 𝐱𝑖𝑠 a
vector of covariates, and 𝜀𝑖𝑠 an error term. For 𝐱𝑖𝑠, we include grain production in 1972, the change in grain
production from 1972 to 2017, and a dummy variable corresponding to the value of -100 percent changes.
Given that some counties are much larger than others in terms of land area or in terms of population, we
consider two models based on the county-level grain production per person (column (1)) along with total
grain production (column (2)). We estimate the above equation using the linear regression model function
lm() and summarize selected coefficients using the stargazer package.

lm_1 <- lm(pop_tot_ch_pct_72_17 ~ ln_grain_prod_person_1972 + grain_ch_pct_72_17 +
 (grain_ch_pct_72_17 == -100) + St_name,
 data = df_pop_grain)

lm_2 <- lm(pop_tot_ch_pct_72_17 ~ ln_grain_prod_1972 + grain_ch_pct_72_17 +
 (grain_ch_pct_72_17 == -100) + St_name,
 data = df_pop_grain)

A

D C

B

Page | 57 Volume 2, Issue 3, June 2020

Table 2. Estimate of Grain Production and Populations Change from 1972-2017

Variable
Population Change, %

1972–2017

 Model 1 Model 2

Log of grain production per capita, 1972 -34.293***
(ln_grain_prod_person_1972) (2.101)

Log of grain production, 1972 -7.140***

(ln_grain_prod_1972) (1.282)

Change in grain production, 1972–2017 -0.096*** -0.090***

(grain_ch_pct_72_17) (0.024) (0.025)

Indicator for ceased grain production -8.785** -0.706

(grain_ch_pct_72_17==-100) (4.049) (4.684)

State fixed effects Yes Yes

Observations 2,727 2,727

Adjusted R squared 0.286 0.224

Residual Std. Error 65.347 68.124
Note: Statistical significance *p < 0.1; **p < 0.05; ***p < 0.01. The two models differ in the grain production variable specified
either as per capita within the county or the county total.

The results suggest negative associations between the grain production variables and population change,
while controlling for unobservable fixed factors at the state level (Table 2). In terms of magnitudes, the
first model indicates that a 10 percent higher grain production per person in 1972 is associated with an
additional 3.4 percent reduction in the county population, while the second model suggests a 10 percent
higher grain production in the county total is similarly associated with a 0.7 percent reduction. Of the
models, the first model is more closely aligned with the relative importance of grain production in the
county’s economy and is here shown to be more strongly negatively correlated with the population change.
The two models also suggest that a 10 percent increase in grain production from 1972 to 2017 is associated
with an additional 0.9 to 1.0 percent decline in the population.
 To examine the geographic distribution of the errors, we add the estimation errors to the data set
by the add_residual() function from the modelr package:

add model predictions, except states that have no grain production
df_pop_grain_res <- df_pop_grain %>%
 filter(!(St_name %in% c("CT", "DC", "MA", "ME", "NH", "RI", "VT"))) %>%
 add_residuals(lm_1, var = "resid_lm_1") %>%
 add_residuals(lm_2, var = "resid_lm_2")

Page | 58 Volume 2, Issue 3, June 2020

Figure 17. Maps of Model Residuals After Fitting Populating Change with Grain Production Data

These errors on the map (Figure 17) show that the residuals from the two models are qualitatively very

similar. Given the fixed effects, the residuals are not concentrated in any particular state. The counties with

dark red and dark blue shades are those that experienced particularly large population declines and gains
respectively, net the state-level average trends.

 In addition to the average effects shown above, we examine how such effects may vary across age

groups. To explore this, we first map the population change for two age groups of 15–29 and 60 and older

(Figure 18). The first map shows that there are fewer young adults in much of rural America today

Page | 59 Volume 2, Issue 3, June 2020

compared with 1972, particularly in the Great Plains. The second map shows an increase in the elderly

population in many parts of the country from 1972 to 2017, except some segments of the Great Plains.

 We examine different patterns of associations by applying the previous model to subsets of the data

across age groups and time periods. For example, Table 3 presents the results for two age groups (15–29

and 60 and above) and two time periods (1972–1982 and 2002–2017). The variable ln_grain_prod.lag is

the grain production (in millions of dollars) at the beginning of the time period, and grain_ch_pct is the

percentage change in grain production during the time period. Two dummy variables are included at the

change of -100 percent and 0 percent, for the 2002–2017 data analysis. The results suggest that these
effects may be heterogeneous across age groups and time periods.

Figure 18. Population Change for Selected Age Group and Time Period

Page | 60 Volume 2, Issue 3, June 2020

Table 3. Estimate of Grain Production and Population Change for Selected Age Group and Time
Period

 Population change, %

Variable Models

 (1) (2) (3) (4)

Log of grain production, 1972 -2.740*** -1.918*** -0.665* -5.548***

(ln_grain_prod.lag) (0.273) (0.251) (0.342) (0.593)

Change in grain production -0.012*** -0.003 -0.011** -0.016**

(grain_ch_pct) (0.005) (0.004) (0.005) (0.008)

Indicator for zero grain production -4.493*** -3.854

(grain_ch_pct == 0) (1.377) (2.388)

Indicator for ceased grain production -1.799 -3.406

(grain_ch_pct == -100) (1.365) (2.367)

State fixed effects Yes Yes Yes Yes

Sample age group 15–29 60 and up 15–29 60 and up

Sample Period 1972–82 1972–82 2002–17 2002–17

Observations 2,719 2,719 2,761 2,761

Adjusted R squared 0.26 0.374 0.111 0.307
Note: Statistical significance *p < 0.1; ** p < 0.05; ***p < 0.01. Models (1)–(4) are estimated on different subsets of data in terms
of age group (15–29 for models (1) and (3): 60 and up for models (2) and (4)) and sample period (1972–1982 for models (1)
and (2): 2002–2017) for models (3) and (4).

To analyze such effects systematically, we arrange a grid of subsamples by age group and time period and

apply the same estimation model to each subsample. We use five age groups (0–14, 15–29, 30–44, 45–59,

60 and up) and four time periods (1972–1982, 1982–1992, 1992–2002, 2002–2017). In a tibble data

frame, which is a special case of the data.frame class, one can split the data by a categorical variable via the

function nest() and store such subsets of data in a list-column. We then apply a regression formula to each

row of the data-column and store the results in another list-column.

Page | 61 Volume 2, Issue 3, June 2020

Here, column data is a list-column containing different subsets of the data separated by age group-era

combination. List-column model contains the corresponding regression outputs, which are summarized in

another list-column rlt, which are further isolated into list-columns of variable names, point estimates,

standard errors, and t statistics. Each cell in the estimate list-column contains a list of coefficient estimates

for a given subsample. These coefficient estimates can be extracted by function unnest(), which returns a

long-format data frame that stacks coefficient estimates for various subsamples according to the age group-

era combination.

create the age group and time period combination
df_pop_grain <- df_pop_grain %>%
 mutate(age_era = paste0(age_group2, ":", Year,sep = ''))

create a regression function to be applied to a given data.frame
pop_ch_model <- function(df) {
 lm(pop_ch_pct ~ ln_grain_prod.lag + grain_ch_pct +
 grain_ch_pct_0 + grain_ch_pct_neg100 + St_name, data = df)
}

function to run a model by group via nest()
run_model_by_group <- function(df, group_var, model_as_function) {
 group_var <- enquo(group_var)
 df2 <- df %>% group_by(!!group_var) %>% nest()
 df2 %>% mutate(
 model = map(data, model_as_function),
 rlt = map(model, summary) %>% map(coefficients) %>% map(data.frame),
 varname = map(rlt, rownames),
 estimate = map(rlt, ~ .x$Estimate),
 st_error = map(rlt, ~ .x$Std..Error),
 t_stat = map(rlt, ~ .x$t.value)
)
}

lm_pop_age_era <-
 run_model_by_group(df_pop_grain %>%
 filter(!is.na(age_group2), Year >= 1980),
 group_var = age_era,
 model_as_function = pop_ch_model)

lm_pop_age_era %>% print(n = 5)
A tibble: 20 x 8
Groups: age_era [20]
age_era data model rlt varname estimate st_error t_stat
<chr> <list<df[,43> <list> <list> <list> <list> <list> <list>
1 age_0-14… [2,719 × 43] <lm> <df[,4]… <chr [4… <dbl [4… <dbl [4… <dbl …
2 age_0-14… [2,799 × 43] <lm> <df[,4]… <chr [4… <dbl [4… <dbl [4… <dbl …
3 age_0-14… [2,802 × 43] <lm> <df[,4]… <chr [4… <dbl [4… <dbl [4… <dbl …
4 age_0-14… [2,761 × 43] <lm> <df[,4]… <chr [4… <dbl [4… <dbl [4… <dbl …
5 age_15-2… [2,719 × 43] <lm> <df[,4]… <chr [4… <dbl [4… <dbl [4… <dbl …
… with 15 more rows

Page | 62 Volume 2, Issue 3, June 2020

For selected coefficients, we summarize the results in Figure 19. The plot on the left shows that people of

all ages, the baby boomer generation in particular, moved out of grain-producing rural counties throughout

the period spanning 1972–2017. The plot on the right shows that an increase in grain production was
associated with a population decline from 1982 to 1992 and post 2002, across age groups.

Figure 19. Associations between Grain Production and Population Change by Age Group and Time

Period
Note: A OLS regression model is estimated for each subset defined by the combination of age group and time period. The plot
shows the coefficient estimates for logged grain production in the beginning of the time period (left) and percentage change in
grain production (right).

rlt_age_era <- lm_pop_age_era %>%
 select(age_era, varname, estimate, st_error, t_stat) %>%
 unnest(cols = c("varname", "estimate", "st_error", "t_stat"))
rlt_age_era %>% print(n = 5)
A tibble: 905 x 5
Groups: age_era [20]
age_era varname estimate st_error t_stat
<chr> <chr> <dbl> <dbl> <dbl>
1 age_0-14:1982 (Intercept) 0.391 2.25 0.174
2 age_0-14:1982 ln_grain_prod.lag -2.56 0.282 -9.05
3 age_0-14:1982 grain_ch_pct -0.00711 0.00476 -1.49
4 age_0-14:1982 St_nameAR 7.26 3.00 2.42
5 age_0-14:1982 St_nameAZ 22.6 5.85 3.86
… with 900 more rows

Page | 63 Volume 2, Issue 3, June 2020

While the issue of rural depopulation is beyond the scope of our analysis here, it helps to shed light on the

associations between grain farming and population change. Many rural communities were initially developed

because of the land’s potential to produce grain and support the residents. As grain production intensified with

time, farms got bigger and fewer, and the communities that relied on grain farming shrunk.

6 Additional Tools
In this section, we briefly describe additional R tools that may be of interest to applied economists.

6.1 rmarkdown

The rmarkdown package allows for producing documents that combine text, R code, and the output of the

code all in one place. It also accommodates LaTex math symbols and equations. Its output can be produced

in several file types such as HTML, PDF, and Microsoft Word. rmarkdown can be useful for taking notes

during data analyses, preparing lab reports, or drafting technical manuscripts. A template is available in
RStudio Integrated Development Environment (IDE).

6.2 flexdashboard

As a special case of rmarkdown document, the flexdashboard output class allows one to easily assemble a

dashboard-style layout consisting of separate segments of output panes. For example, multiple plots and

tables can be arranged in columns and rows all in one screen. A flexdashboard template is available in

RStudio IDE.

6.3 shiny

With shiny package, one can develop interactive applications that can run on local computers or be

deployed online. A template is available in RStudio IDE. To learn more, a good place to start is a tutorial by
RStudio.12

6.4 dygraphs

With the dygraphs package, one can create interactive time-series plots on which the user can see values

associated with selected data points with mouse-over actions and select a time pan of the plot to zoom in

and out. Here is a simple example that is plotted in Figure 20:

12 https://shiny.rstudio.com/

library(dygraphs)

load(file="ts_milk_price.RData")

PA <- ts_milk_price %>% filter(state_alpha == "PA") %>%
 select(Value) %>%
 ts(start = c(1990, 1), end = c(2019, 08), frequency = 12)

CA <- ts_milk_price %>% filter(state_alpha == "CA") %>%
 select(Value) %>%
 ts(start = c(1990, 1), end = c(2019, 08), frequency = 12)

cbind(PA, CA) %>%
 dygraph(main = "Monthly Milk Price, $/cwt") %>%
 dyRangeSelector()

https://shiny.rstudio.com/
https://shiny.rstudio.com/
https://shiny.rstudio.com/

Page | 64 Volume 2, Issue 3, June 2020

Figure 20. Example of an Interactive Dygraphs Plot for Pennsylvania and California Monthly Milk
Prices

6.5 leaflet
The leaflet package lets one create interactive maps that can be hosted online with base maps provided by

OpenStreetMap and CartoDB. Figure 21 was developed with data from the U.S. Agricultural Census to show

the distribution of farms across the conterminous United States that reported using value-added marketing

methods in 2017.

Page | 65 Volume 2, Issue 3, June 2020

Figure 21. Example of an Interactive Leaflet Map That Allows for Zooming In or Out and Selecting
the Area in View

6.6 Cheatsheets
We recommend all readers to explore a collection of cheatsheets hosted by RStudio.13 The cheatsheets

provide great summaries of popular R packages and their examples. R beginners would find the

cheatsheets about R-programming basics and RStudio IDE useful. Experienced R users may encounter

recently uploaded and noteworthy packages for popular topics such as big data management, machine-

learning, and integration with other programming environments.

6.7 Online Searches
R users quickly learn that the best way to find programming information or to get help is through online

searches. A keyword search usually turns up relevant online Q&A discussions, which work remarkably well

for troubleshooting (e.g., with fine-tuning data plots).

6.8 data.table
Although this article focuses on the dplyr package for data transformation, a popular alternative is the

data.table package. For example, the following code performs the parallel tasks with some of the dplyr code

we presented above (i.e., selecting the census table that contains the number of farms by farm sales class

and also aggregating them into a binary farm sales class). Note the differences in the syntax of the two

packages.

The reader may find that the syntax of data.table is not as readable as that of dplyr. Indeed, the

developer of dplyr intentionally designed its syntax to be easy to read. Interested readers may be referred

13 https://rstudio.com/resources/cheatsheets/

https://rstudio.com/resources/cheatsheets/

Page | 66 Volume 2, Issue 3, June 2020

to online discussions14 or side-by-side comparisons.15 Also, notice the use of the same piping

operator %>%, which in fact belongs to the magrittr package (from which dplyr imports it). An advantage

of data.table over dplyr is its computational speed, which can become important for large data sets (say,

greater than 1 GB). For those who prefer the dplyr syntax but want the speed of data.table, try a package

called dtplyr, which is currently being developed by the developer of dplyr package as a data.table backend

for dplyr.16

6.9 sparklyr

Recent progress in the R and Spark integration now enables one to use R for processing so-called big data

(e.g., in a distributed data file system like Apache Hadoop or in a streaming data platform like Apache

Kafka). With the sparklyr package,17 one can combine the core EDA techniques through the dplyr and

ggplot2 packages with large-scale data processing in Apache Spark, without holding the data in the local

machine’s memory. Put simply, sparklyr connects an R session with Spark, translates dplyr functions into

Hive SQL code, and submits the code to the Spark connection. One can read a subset of data or data

summary, generated by such dplyr data transformations, into the local machine’s memory by the collect()

function for data visualization by ggplot2 . Moreover, the sparklyr package provides additional functions to

utilize Spark’s machine-learning library APIs, integrate a shiny application with big data, and build a data

pipeline (e.g., a sequence of data cleaning, transformation, modeling, and prediction), which can be further

exported as an API using the mleap package.

14 https://stackoverflow.com/questions/21435.
15 https://atrebas.github.io/post/2019-03-03-datatable-dplyr/.
16 available from https://github.com/tidyverse/dtplyr.
17 One can practice many functionalities of the sparklyr package with a simple local installation of Spark, without any access

to an actual big data connection. For more information, see https://spark.rstudio.com/ and https://therinspark.com/.

library(data.table)
library(magrittr)

us17_dt <- data.table(us17)
us17_dt[census_table == 2 &
 grepl("COMMODITY TOTALS - OPERATIONS WITH SALES", Item) &
 !is.na(Class),
 c("Class", "Value")]

county17_dt <- data.table(county17)
county17_dt[

 census_table == 2 &
 grepl("COMMODITY TOTALS - OPERATIONS WITH SALES", Item) &
 !is.na(Class) & Co_name! ="NULL",
 class_S_NS : = ifelse(Class %in% class_S, "S", "NS")] %>%
 .[, .(Value = sum(Value, na.rm = T)),
 by = c("St_code", "St_name", "Co_code", "Co_name", "class_S_NS")] %>%
 .[class_S_NS =="S"] %>%
 .[order(-Value)] %>% head(n = 10)

https://stackoverflow.com/questions/21435339/data-table-vs-dplyr-can-one-do-something-well-the-other-cant-or-does-poorly
https://atrebas.github.io/post/2019-03-03-datatable-dplyr/
https://stackoverflow.com/questions/21435
https://atrebas.github.io/post/2019-03-03-datatable-dplyr/
https://github.com/tidyverse/dtplyr
https://spark.rstudio.com/
https://therinspark.com/

Page | 67 Volume 2, Issue 3, June 2020

7 Concluding Remarks
We have reviewed the core tools of data visualization and exploration from the recent developments in R

freeware. We believe this new generation of tools would be a great asset for economists and students in

applied economics. Hands-on learning with such tools can be highly complementary to many of economics

courses, and given today’s high demand for data scientists, it is valuable for students to acquire practical

skills for EDA. In addition to their knowledge of statistics and econometrics, many students would be

empowered to learn how to explore real-world data and become capable of generating effective data

narratives and new hypotheses.

 To advance students’ skills in data analyses and cultivate their interests in economic issues, we

suggest three directions of future efforts. First, teaching examples and case studies on EDA education may

be shared through teaching journals, like this publication. Second, to aid instructors who undertake such

teaching, applied economics departments may dedicate some tutorial hours for EDA and hire experienced

students as peer tutors. Third, applied economics conferences may host undergraduate competitions for

data visualization projects, which focus on public education and outreach rather than research outputs. On

the last point, the hurdle for creating data visualization materials or data narratives is much lower,

compared to producing new research findings, and therefore such projects will be able to engage a larger

body of students. While it may not be called research in itself, the creation of insightful data plots can

contribute to public knowledge, and hence it would merit recognition in applied economics communities.

Through the combination of hands-on-learning, technical support, and academic recognition, EDA

education can be made an integral part of an applied economics curriculum.

About the Author: Kota Minegishi is an Assistant Professor at the University of Minnesota, Twin Cities (corresponding
author: kota@umn.edu). Taro Mieno is an Assistant Professor at the University of Nebraska-Lincoln.

mailto:kota@umn.edu

Page | 68 Volume 2, Issue 3, June 2020

References
Alonzo, A. 2016. “Top 5 Broiler Producers Dominate US Production.”Retrieved from https://www.wattagnet.com/articles/26925-

top-5-broiler-producers-dominate-us-production

Athey, S., J. Tibshirani, andS. Wager. 2019. “Generalized Random Forests.”The Annals of Statistics47(2):1148–1178.

Coble, K.H., A.K. Mishra, S.Ferrell, andT. Griffin. 2018. “Big Data in Agriculture: A Challenge for the Future.”Applied Economic

Perspectives and Policy40(1):79–96.

Healy, K. 2018. Data Visualization: A Practical Introduction, 1sted. Princeton NJ: Princeton University Press.

Ismay, C., and A.Y. Kim. 2019. Statistical Inference via Data Science: A ModernDive into R and the Tidyverse,1sted. Boca Raton:

Chapman and Hall/CRC.

Johnson, K.M., andG.V. Fuguitte. 2000. “Continuity and Change in Rural Migration Patterns, 1950–1995.”Rural

Sociology65(1):27–49.

Kabacoff, R. 2018. Data Visualization with R.Online open-source book accessed athttps://rkabacoff.github.io/datavis/

Longworth, R.C. 2009. Caught in the Middle: America’s Heartland in the Age of Globalism.New York: Bloomsbury USA.

Lovelace, R., J. Nowosad, and J. Muenchow.2019. Geocomputation with R, 1sted. Boca Raton: ChapmanandHall/CRC.

O’Donoghue, E., R. Hoppe,D.Banker, and P. Korb. 2009. Exploring Alternative Farm Definitions: Implications for Agricultural

Statistics and Program Eligibility. Economic Information Bulletin No. 49. Washington DC: U.S. Department of

Agriculture.

Storm, H., K. Baylis, and H. Heckelei. 2019. “Machine Learning in Agricultural and Applied Economics.” European Review of
Agricultural Economics. https://doi.org/10.1093/erae/jbz033

Twain, M. 1892. The American Claimant. New York: Charles L. Webster.

Walzer, N. 2003. The American Midwest: Managing Change in Rural Transition,1sted. Armonk NY: Routledge.

White, K.J.C. 2008. “Population Change and Farm Dependence: Temporal and Spatial Variation in the U.S. Great Plains, 1900–

2000.”Demography45(2):363–386.

Wickham, H., and G. Grolemund.2017. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data, 1sted.

Sebastopol CA: O’Reilly Media.

Wickham, H., M. Averick, J.Bryan, W.Chang, L.McGowan, R. François, G.Grolemund, . . .H. Yutani. 2019. “Welcome to the

Tidyverse.” Journal of Open Source Software4(43):1686.

Wilkinson, L. 2005. The Grammar of Graphics.Springer.

Wood, D. 2018. “Costco Poultry Processing Plant to Boost Nebraska Economy.”Retrieved from

https://www.acppubs.com/articles/7398-costco-poultry-processing-plant-to-boost-nebraska-economy

2(3) doi: 10.22004/ag.econ.303913

©2020 All Authors. Copyright is governed under Creative Commons BY-NC-SA 4.0

(https://creativecommons.org/licenses/by-nc-sa/4.0/). Articles may be reproduced or electronically distributed as long as

attribution to the authors, Applied Economics Teaching Resources and the Agricultural & Applied Economics Association is

maintained. Applied Economics Teaching Resources submissions and other information can be found at:

https://www.aaea.org/publications/applied-economics-teaching-resources.

https://www.wattagnet.com/articles/26925-top-5-broiler-producers-dominate-us-production
https://www.wattagnet.com/articles/26925-top-5-broiler-producers-dominate-us-production
https://doi.org/10.1093/erae/jbz033
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.aaea.org/publications/applied-economics-teaching-resources

